Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 9(1): 90, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314705

RESUMO

Drought is a major cause of agricultural losses worldwide. Climate change will intensify drought episodes threatening agricultural sustainability. Gaining insights into drought response mechanisms is vital for crop adaptation to climate emergency. To date, only few studies report comprehensive analyses of plant metabolic adaptation to drought. Here, we present a multifactorial metabolomic study of early-mid drought stages in the model plant Arabidopsis thaliana. We sampled root and shoot tissues of plants subjected to water withholding over a six-day time course, including brassinosteroids receptor mutants previously reported to show drought tolerance phenotypes. Furthermore, we sequenced the root transcriptome at basal and after 5 days drought, allowing direct correlation between metabolic and transcriptomic changes and the multi-omics integration. Significant abiotic stress signatures were already activated at basal conditions in a vascular-specific receptor overexpression (BRL3ox). These were also rapidly mobilized under drought, revealing a systemic adaptation strategy driven from inner tissues of the plant. Overall, this dataset provides a significant asset to study drought metabolic adaptation and allows its analysis from multiple perspectives.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Adaptação Fisiológica , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Secas , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico
2.
Curr Biol ; 31(21): 4860-4869.e8, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34529936

RESUMO

Brassinosteroids (BRs) play essential roles in growth and development in seed plants;1 disturbances in BR homeostasis lead to altered mitotic activity in meristems2,3 and organ boundaries4,5 and to changes in meristem determinacy.6 An intricate signaling cascade linking the perception of BRs at the plasma membrane to the regulation of master transcriptional regulators belonging to the BEH, for BES1 homologues, family7 has been described in great detail in model angiosperms. Homologs of these transcription factors are present in streptophyte algae and in land plant lineages where BR signaling or function is absent or has not yet been characterized. The genome of the bryophyte Marchantia polymorpha does not encode for BR receptors but includes one close ortholog of Arabidopsis thaliana BRI1-EMS-SUPPRESSOR 1 (AtBES1)8 and Arabidopsis thaliana BRASSINAZOLE-RESISTANT 1 (AtBZR1),9 MpBES1. Altered levels of MpBES1 severely compromised cell division and differentiation, resulting in stunted thalli that failed to differentiate adult tissues and reproductive organs. The transcriptome of Mpbes1 knockout plants revealed a significant overlap with homologous functions controlled by AtBES1 and AtBZR1, suggesting that members of this gene family share a subset of common targets. Indeed, MpBES1 behaved as a gain-of-function substitute of AtBES1/AtBZR1 when expressed in Arabidopsis, probably because it mediates conserved functions but evades the regulatory mechanisms that native counterparts are subject to. Our results show that this family of transcription factors plays an ancestral role in the control of cell division and differentiation in plants and that BR signaling likely co-opted this function and imposed additional regulatory checkpoints upon it.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Marchantia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Divisão Celular , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Marchantia/genética , Marchantia/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Curr Opin Plant Biol ; 51: 105-113, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31349107

RESUMO

Brassinosteroids (BRs) are essential hormones for plant growth and development that are perceived at the plasma membrane by a group of Leucine-Rich Repeat Receptor-Like Kinases (LRR-RLKs) of the BRASSINOSTEROID INSENSITIVE 1 (BRI1) family. The BRI1 receptor was first discovered by genetic screenings based on the dwarfism of BR-deficient plants. There are three BRI1 homologs, named BRI1-like 1, 2 and 3 (BRLs), yet only BRL1 and BRL3 behave as functional BR receptors. Whereas the BRI1 pathway operates in the majority of cells to promote growth, BRL receptor signaling operates under specific spatiotemporal constraints. Despite a wealth of information on the BRI1 pathway, data on specific BRL pathways and their biological relevance is just starting to emerge. Here, we systematically compare BRLs with BRI1 to identify any differences that could account for specific receptor functions. Understanding how vascular and cell-specific BRL receptors orchestrate plant development and adaptation to the environment will help shed light on membrane signaling and cell communication in plants, while opening up novel possibilities to improve stress adaptation without penalizing growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassinosteroides , Proteínas Quinases , Receptores de Superfície Celular , Transdução de Sinais
4.
Nat Commun ; 9(1): 4680, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30409967

RESUMO

Drought represents a major threat to food security. Mechanistic data describing plant responses to drought have been studied extensively and genes conferring drought resistance have been introduced into crop plants. However, plants with enhanced drought resistance usually display lower growth, highlighting the need for strategies to uncouple drought resistance from growth. Here, we show that overexpression of BRL3, a vascular-enriched member of the brassinosteroid receptor family, can confer drought stress tolerance in Arabidopsis. Whereas loss-of-function mutations in the ubiquitously expressed BRI1 receptor leads to drought resistance at the expense of growth, overexpression of BRL3 receptor confers drought tolerance without penalizing overall growth. Systematic analyses reveal that upon drought stress, increased BRL3 triggers the accumulation of osmoprotectant metabolites including proline and sugars. Transcriptomic analysis suggests that this results from differential expression of genes in the vascular tissues. Altogether, this data suggests that manipulating BRL3 expression could be used to engineer drought tolerant crops.


Assuntos
Arabidopsis/fisiologia , Secas , Desenvolvimento Vegetal , Feixe Vascular de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Metaboloma , Mutação/genética , Pressão Osmótica , Desenvolvimento Vegetal/genética , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Estresse Fisiológico/genética , Transcrição Gênica , Tropismo
5.
J Cell Sci ; 131(2)2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29242230

RESUMO

Stem cell regeneration is crucial for both cell turnover and tissue healing in multicellular organisms. In Arabidopsis roots, a reduced group of cells known as the quiescent center (QC) act as a cell reservoir for surrounding stem cells during both normal growth and in response to external damage. Although cells of the QC have a very low mitotic activity, plant hormones such as brassinosteroids (BRs) can promote QC divisions. Here, we used a tissue-specific strategy to investigate the spatial signaling requirements of BR-mediated QC divisions. We generated stem cell niche-specific receptor knockout lines by placing an artificial microRNA against BRI1 (BRASSINOSTEROID INSENSITIVE 1) under the control of the QC-specific promoter WOX5. Additionally, QC-specific knock-in lines for BRI1 and its downstream transcription factor BES1 (BRI1-EMS-SUPPRESOR1) were also created using the WOX5 promoter. By analyzing the roots of these lines, we show that BES1-mediated signaling cell-autonomously promotes QC divisions, that BRI1 is essential for sensing nearby inputs and triggering QC divisions and that DNA damage promotes BR-dependent paracrine signaling in the stem cell niche as a prerequisite to stem cell replenishment.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Comunicação Parácrina , Regeneração , Transdução de Sinais , Nicho de Células-Tronco , Proteínas de Arabidopsis/metabolismo , Microambiente Celular , Dano ao DNA , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/metabolismo , Meristema/citologia , Meristema/metabolismo , Modelos Biológicos , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plântula/citologia , Plântula/metabolismo , Transcrição Gênica
6.
Methods Mol Biol ; 1564: 181-192, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28124255

RESUMO

Roots anchor plants to the soil and are essential for a successful plant growth and adaptation to the environment. Research on the primary root in the plant model system Arabidopsis thaliana has yielded important advances in the molecular and cellular understanding of root growth and development. Several studies have uncovered how the hormones brassinosteroids (BRs) control cell cycle and differentiation programs through different cell-specific signaling pathways that are key for root growth and development. Currently, an important challenge resides in the translation of the current knowledge on Arabidopsis roots into agronomically valuable species to improve the agricultural production and to meet the food security goals of the millennium. In this chapter, we characterize the primary root apex of the cereal Sorghum bicolor (L. Moench) (sorghum), analyze the physiological response of sorghum roots to BRs, and examine the phylogeny of the BRASSINOSTEROID INSENSITIVE1-like receptor family in Arabidopsis and its orthologous genes in sorghum. Overall, we support the use of sorghum as a suitable crop model species for the study of BR signaling in root growth and development. The methods presented enable any laboratory worldwide to use sorghum primary roots as a favorite organ for the study of growth and development in crops.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Brassinosteroides/farmacologia , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/efeitos dos fármacos , Proteínas Quinases/genética , Transdução de Sinais , Sorghum/efeitos dos fármacos , Esteroides Heterocíclicos/farmacologia , Arabidopsis/classificação , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Sequência Conservada , Regulação da Expressão Gênica no Desenvolvimento , Microscopia Confocal , Microtomia/instrumentação , Microtomia/métodos , Filogenia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Propídio , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sorghum/classificação , Sorghum/genética , Sorghum/crescimento & desenvolvimento , Inclusão do Tecido/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...